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Abstract

This is the official user guide for the MUELU multigrid library in Trilinos version 11.12. This
guide provides an overview of MUELU, its capabilities, and instructions for new users who want
to start using MUELU with a minimum of effort. Detailed information is given on how to drive
MUELU through its XML interface. Links to more advanced use cases are given. This guide
gives information on how to achieve good parallel performance, as well as how to introduce new
algorithms. Finally, readers will find a comprehensive listing of available MUELU options. Any
options not documented in this manual should be considered strictly experimental.
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Chapter 1

Introduction

This guide is gives an overview of MUELU’s capabilities. If you are looking for a tutorial,
please refer to the MUELU tutorial in muelu/doc/Tutorial. New users should start with §2. It
strives to give the new user all the information he/she might need to begin using MUELU quickly.
Those who are interested in optimizing parallel performance should refer to section §3. Users who
simply need to look up particular options should refer to the complete set of supported options is
given in §4. Power users or developers who are interested in extending MUELU should read §??,
which describes how MUELU can be modified to incorporate new algorithms.

If you find errors or omissions in this guide, please contact the MUELU developer list, muelu-developers®@
software.sandia.gov.
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Chapter 2

Getting Started

This section is meant to get you using MUELU as quickly as possible.

2.1 Prerequisites

It’s assumed the reader is comfortable with TEUCHOS referenced-counted pointers (RCPs) for
memory management. An introduction to RCPs can be found in [3]. This guide also assumes
familiarity with the Teuchos: :ParameterList class [11].

2.2 Overview of MUELU

MUELU is an extensible multigrid library that is part of the TRILINOS project. MUELU works
with EPETRA (32- and 64-bit versions) and TPETRA matrix types. The library is written in C++
and allows for different ordinal (index) and scalar types. MUELU is designed to be efficient on
many different computer architectures, from workstations to supercomputers. While it is MPI
based, MUELU is relies on the “MPI+X” principle, where “X” can be threading or CUDA.

MUELU provides a number of different multigrid algorithms:

1. smoothed aggregation algebraic multigrid (AMG), appropriate for Poisson-like and elasticity
problems

2. Petrov-Galerkin aggregation AMG for convection-diffusion problems

3. aggregation-based AMG for problems arising from the eddy current formulation of Maxwell’s
equations

MUELU’s software design allows for the rapid introduction of new multigrid algorithms.

13



2.3 Quick Start

The MUELU C++ interface works with either EPETRA or TPETRA matrices. Solver options
can be provided either by XML input files or parameter lists (key/value pairs).

In this example for TPETRA users, options are read from an XML text file.

Teuchos: :RCP<Tpetra: :CrsMatrix<> > A;

// create A here ...

Teuchos: :RCP<MueLu: : TpetraOperator> mueLuPreconditioner;

std::string optionsFile = "mueluOptions.xml";

mueLuPreconditioner = MueLu::CreateTpetraPreconditioner(A, optionsFile);

A similar interface exists for EPETRA users.

Teuchos: :RCP<Epetra_CrsMatrix> A;

// create A here ...

Teuchos: :RCP<MueLu: :EpetraOperator> mueLuPreconditioner;

std::string optionsFile = "mueluOptions.xml";

mueLuPreconditioner = MueLu::CreateEpetraPreconditioner(A, optionsFile);

In this example for TPETRA users, options are provided via a Teuchos: :ParameterList.

Tpetra: :CrsMatrix<> A;

// create A here ...

Teuchos: :RCP<MueLu: : TpetraOperator> mueLuPreconditioner;

Teuchos: :ParameterList paramlist;

paramList.set("verbosity", "medium");

paramList.set("multigrid algorithm", "sa");
paramList.set("aggregation: type", "uncoupled");
paramList.set("smoother: type", "CHEBYSHEV");

paramlList.set("coarse: max size", 500);

mueLuPreconditioner = MueLu::CreateTpetraPreconditioner(A, paramList);

2.4 Multigrid Introduction

A brief multigrid description is given here (see [5] or [12] for more information). A multigrid
solver tries to approximate the original problem of interest with a sequence of smaller (coarser)
problems. The solutions from the coarser problems are interpolated and combined in order to
accelerate convergence of the original (fine) problem. on the finest grid. A simple multilevel
iteration is illustrated in Figure 2.1. (This algorithm is borrowed from [8].)

In the multigrid iteration in Figure 2.1, the S}()’s and S7()’s are called pre-smoothers and
post-smoothers. They are approximate solvers (e.g. symmetric Gauss-Seidel), and the subscript k
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function MULTILEVEL(Ay, b, u, k)
// Solve A; u =b (k is current grid level)
u =S (A, b,u)
if (k # Nlevel — 1) then
P, = determine_interpolant( Ay, )
F= PkT (b —Akl/t)
Aii1 = PTAP
v=20
multilevel(Ag, 1,7, v,k+ 1)
u=u+ Py
u=S;(Ag,b,u)
end if
end function

Figure 2.1. High level multigrid V cycle consisting of ‘Nlevel’
levels to solve Ax = b, with Ag = A.

denotes the number of applications of the approximate solution method. The purpose of a smoother
is to quickly reduce certain error modes in the approximate solution on a level i. For symmetric
fine level problems, the pre- and post-smoothers must be chosen to maintain symmetry (e.g., for-
ward Gauss-Seidel for the pre-smoother and backward Gauss-Seidel for the post-smoother). For
the coarsest level, often a direct solve is employed if the problem is small enough. The P;’s are
interpolation matrices that transfer solutions from coarse levels to finer levels. In geometric multi-
grid, the P;’s are determined by the application, whereas they are automatically generated in an
algebraic multigrid method. For symmetric problems, typically R, = PkT . For nonsymmetric prob-
lems, this is not necessarily true. The A;’s are the coarse level problems and are generated through
a so-called Galerkin product.

Note that the algebraic multigrid algorithms implemented in MUELU generate the grid transfers
P, automatically and the coarse problems A; via a sparse triple matrix product. There are many
smoothers and direct solvers available for use in MUELU through the IFPACK, IFPACK2, AMESOS,
and AMESOS2 packages (see §4).

2.5 Configuring and Building

MUELU has been compiled successfully with GNU (many 4.x versions), Intel 12.1/13.1 and
clang 3.4 C++ compilers.

15



2.5.1 Required Dependencies

MUELU requires that TEUCHOS and either EPETRA/IFPACK or TPETRA/IFPACK?2 be enabled.

2.5.2 Recommended Dependencies

We strongly recommend that you enable the following dependencies along with MUELU:

e EPETRA stack: AZTECOO, EPETRA, AMESOS, IFPACK, ISORROPIA, GALERI, ZOLTAN

e TPETRA stack: AMESOS2, BELOS, GALERI, IFPACK2, TPETRA, ZOLTAN?2

2.5.3 Tutorial Dependencies

In order to run the MUELU Tutorial [13] located in muelu/doc/Tutorial, MUELU must be
configured with the following dependencies enabled:

AZTECOO, AMESOS, AMESOS2, BELOS, EPETRA, IFPACK, IFPACK2, ISORROPIA, GALERI,
TPETRA, ZOLTAN, ZOLTAN?2.

2.5.4 Complete List of Direct Dependencies

Table 2.1 enumerates the dependencies of MUELU. Certain dependencies are optional, whereas
others are required. Furthermore, MUELU'’s tests depend on certain libraries that are not required
if you only want to link against the MUELU library and do not want to compile its tests.

AMESOS?2 is necessary if you want to use a sparse direct solve on the coarsest level. ZOLTAN?2
is necessary if you want to be able to rebalance a matrix in parallel (see §3). BELOS is necessary
if you want to be able to use MUELU as a preconditioner instead of a solver.

@ Note that MUELU has also been successfully tested with SuperLU 4.1 and SuperLU 4.2.

@ Be aware that other packages such as ZOLTAN and ZOLTAN?2 may come with additional require-
ments for third party libraries (such as ParMetis), which are not listed here as explicit dependencies
of MUELU. It is highly recommended to install ParMetis 3.1.1 or newer for ZOLTAN and ParMetis
4.0.x for ZOLTAN2.

2.5.5 Configuring

You should configure and build MUELU in a directory other than the source tree. Here we give
a sample configure script that will enable MUELU and all of its optional dependencies:

16



Dependency Required Optional
Library Testing | Library Testing
AMESOS x ”
AMESO0S2 X <
AzTECOO «
BELOS <
EPETRA X <
IFPACK X X
IFPACK?2 X <
ISORROPIA X X
GALERI «
KOKKOSCLASSIC X
TEUCHOS X X
TPETRA X <
XPETRA X X
ZOLTAN X «
ZOLTAN2 X «
Boost .
BLAS X X
LAPACK X X
MPI X <
SuperLU 4.3 X «

Table 2.1. MUELU’s required and optional dependencies. De-
pendencies are further subdivided by whether the MUELU library
itself has a dependency (Library), or whether a MUELU test has a
dependency (Testing).

17




export TRILINOS_HOME=/path/to/your/Trilinos/source/directory
cmake -D BUILD_SHARED_LIBS:BOOL=0ON \

-D CMAKE_BUILD_TYPE:STRING="RELEASE" \

-D CMAKE_CXX_FLAGS:STRING="-g" \

-D Trilinos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=0N \

-D Trilinos_ENABLE_TESTS:BOOL=0FF \

-D Trilinos_ENABLE_EXAMPLES:BOOL=0FF \

-D Trilinos_ENABLE_MueLu:BOOL=0N \

-D MueLu_ENABLE_TESTS:STRING=0ON \

-D MueLu_ENABLE_EXAMPLES:STRING=0ON \

-D TPL_ENABLE_BLAS:BOOL=0N \

-D TPL_ENABLE_MPI:BOOL=0N \

${TRILINOS_HOME}

More configure examples can be found in Trilinos/sampleScripts. For more information on
configuring, see the Trilinos quick start guide [1].

2.6 Simple Example

The most common scenario for MUELU is that the user needs an iterative linear solver with
an AMG preconditioner. When using TRILINOS the user has the choice between TPETRA and
EPETRA for the underlying linear algebra. For linear solvers TRILINOS provides the packages
AZTECOOQO and BELOS which both implement the most important iterative Krylov subspace meth-
ods such as CG and GMRES.

2.6.1 MUELU as preconditioner within BELOS

Assuming that TPETRA is used for the linear algebra with a linear solver from the BELOS
package the following code shows the basic steps how to use a MUELU multigrid preconditioner.
The focus is on the algorithmic outline of setting up a linear solver, such that we skip the template
parameters to keep the example short and clear. The user may refer to the corresponding source
files within the examples and test folders for concrete examples.

First we create the MUELU multigrid preconditioner using xml parameters from a file on the
hard disk (e.g., mueluOptions.xml in the example below).

Teuchos: :RCP<Tpetra::CrsMatrix<> > A;

// create A here ...

Teuchos: :RCP<MueLu: : TpetraOperator> mueLuPreconditioner;

std::string optionsFile = "mueluOptions.xml";

mueLuPreconditioner = MuelLu::CreateTpetraPreconditioner(A, optionsFile);

18
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The xml file defines the multigrid preconditioner. A typical parameter list file for MUELU
looks like

<ParameterList name="MueLu">
<Parameter name="verbosity" type="string" value="low"/>

<Parameter name="max levels" type="int" value="3"/>
<Parameter name="coarse: max size" type="int" value="10"/>

<Parameter name="multigrid algorithm" type="string" value="sa"/>

<!-- Smoothing -->
<!-- Comment/uncomment different sections to try different smoothers -->
<!-- Jacobi -—>

<Parameter name="smoother: type" type="string" value="RELAXATION"/>
<ParameterList name="smoother: params">

<Parameter name="relaxation: type" type="string" value="Jacobi"/>

<Parameter name="relaxation: sweeps" type="int" value="1"/>

<Parameter name="relaxation: damping factor" type="double" value="0.9"/>
</ParameterList>

<!-- Aggregation -—>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>
<Parameter name="aggregation: min agg size" type="int" value="3"/>
<Parameter name="aggregation: max agg size" type="int" value="9"/>

</ParameterList>

It defines a 3 level smoothed aggregation multigrid algorithm (optimal for symmetric positive
definite matrices). The aggregation size is between 3 and 9 nodes which may be a good choice
for a 2D problem. As level smoother one sweep with a damped Jacobi method is used. On the
coarsest level a direct solver is applied per default. A complete list of all available parameters and
valid parameter choices is given in §4 of this user guide.

Beside of the linear operator A we als need an initial guess vector for the solution and a right
hand side vector for solving a linear system

Teuchos: :RCP<const Tpetra::Map<> > map = A->getDomainMap() ;

// Create initial vectors

Teuchos: :RCP<Tpetra::MultiVector<> > B, X;

X = Teuchos::rcp( new Tpetra::MultiVector<>(map,numrhs) );
Belos: :MultiVecTraits<>: :MvRandom( *X );

B = Teuchos::rcp( new Tpetra::MultiVector<>(map,numrhs) );
Belos: :OperatorTraits<>::Apply( *A, *X, *B );

Belos: :MultiVecTraits<>::MvInit( *X, 0.0 );

19




To generate a dummy example above code first declares to vectors. The right hand side vector is
calculated as matrix vector product of a random vector with the operator A. The initial guess is
finally initialized with zeros.

Then, one can define a Belos: :LinearProblem object where the mueLuPreconditioner is
used for left preconditioning.

Belos::LinearProblem<> problem( A, X, B );
problem->setLeftPrec (mueLuPreconditioner) ;
bool set = problem.setProblem();

Next, we can set up a BELOS solver using some basic parameters

Teuchos: :ParameterList belosList;

belosList.set( "Block Size", 1 );

belosList.set( "Maximum Iterations", 100 );

belosList.set( "Convergence Tolerance", 1le-10 );

belosList.set( "Output Frequency", 1 );

belosList.set( "Verbosity", Belos::TimingDetails + Belos::FinalSummary );

Belos: :BlockCGSolMgr<> solver( rcp(&problem,false), rcp(&belosList,false) );

Finally, one can perform the solution process using

Belos: :ReturnType ret = solver.solve();

2.6.2 MUELU as preconditioner within AZTECOO

When using EPETRA the AZTECOO is an alternative for BELOS which provides fast and ma-
ture implementations of iterative linear solvers (even though the user is recommended to use the
more modern BELOS implementations).

Assuming that the linear operator is given as an EPETRA object the MUELU preconditioner
can be generated via

Teuchos: :RCP<Epetra_CrsMatrix> A;

// create A here

Teuchos: :RCP<MueLu: :EpetraUperator> mueLuPreconditioner;

std::string optionsFile = "mueluOptions.xml";

mueLuPreconditioner = MueLu::CreateEpetraPreconditioner(A, optionsFile);

The file format for the xml parameter file is the same as for the example from §2.6.1.

Furthermore, we assume that a right hand side vector and a solution vector with the initial guess
are defined

20




Teuchos: :RCP<const Epetra_Map> map = A->DomainMap();

Teuchos: :RCP<Epetra_Vector> B = Teuchos: :rcp(new Epetra_Vector(map));
Teuchos: :RCP<Epetra_Vector> X = Teuchos::rcp(new Epetra_Vector (map));
X->PutScalar(0.0);

Then, a Epetra_LinearProblem can be defined by

Epetra_LinearProblem epetraProblem(A.get(), X.get(), B.get());

With the following lines an AZTECOO CG solver is generated

Aztec00 aztecSolver(epetraProblem);
aztecSolver.SetAztecOption(AZ_solver, AZ_cg);
aztecSolver.SetPrecOperator (mueLuPreconditioner.get());

Finally, the linear system is solved via

int maxIts = 100;
double tol = 1e-10;
aztecSolver.Iterate(maxIts, tol);

2.6.3 Further remarks

This section is only meant to give a rough overview on how to use MUELU as preconditioner
within the TRILINOS packages for iterative solvers. There are other more complicated ways to use
MUELU as preconditioners for BELOS and AZTECOO through the XPETRA interface. Of course,
MUELU can also work as standalone multigrid solver. For more information on these topics with
examples the reader may refer to the examples and tests in the MUELU source folder as well as to
the MUELU tutorial ([13]).
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Chapter 3

Performance tips

This Section gives few tips on tuning MUELU performance.

3.1 Tips for impatient user

1. Use matrix rebalancing options when running in parallel. See §??.
2. Adjust aggregation strategy. See §??.

3. Try replacing direct solver with a few smoothing steps, if coarse level solve becomes too
expensive. See §4.6.

4. Choose a smoother whose computational kernel is a matvec, such as the Chebyshev polyno-
mial smoother, if a problem is symmetric positive definite. See §4.4.
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Chapter 4

MUELU options

In this section, we report the complete list of MUELU input parameters. It is important to
notice, however, that MUELU relies on other TRILINOS packages to provide support for some
of its algorithms. For instance, IFPACK/IFPACK?2 provide standard smoothers like Jacobi, Gauss-
Seidel or Chebyshev, while AMESOS/AMESOS2 provide access to direct solvers. The parameters
affecting the behaviour of delegated algorithms are simply passed by MUELU to a routine from
the corresponding package. Please consult corresponding packages for a full list of supported
algorithms and corresponding parameters.

4.1 Using parameters on individual levels

Some of the parameters that affect the preconditioner can in principle be different from level to
level. By default, parameters affects all levels in the multigrid hierarchy.

The settings on a particular levels can be changed by using level sublists. Level sublist is
a ParameterList sublist with a name “level XX”. The parameter names in the sublist do not
require any modifications. For example, the following fragment of code

<ParameterList name="level 2">
<Parameter name="smoother: type" type="string" value="CHEBYSHEV"/>
</ParameterList>

changes the smoother for level 2 to be a polynomial smoother.

4.2 Parameter validation

By default, MUELU validates the input parameter list. A parameter that is misspelled or un-
known, or has an incorrect value type will cause an exception to be thrown and execution to halt.

@ Spaces are important within a parameter’s name. Please separate words by just one space, and
make sure there are no leading or trailing spaces.

25



The option print initial parameters prints the initial list given to the interpreter. The
option print unused parameters prints the list of unused parameters.

4.3 General options

verbosity [string] Control of the amount of printed information.
Possible values: “none”, “low”, “medium”, high”,
“extreme”. Default: “high”.

number of equations [int] Number of PDE equations at each gride node.
Only constant block size is considered. Default: 1.

max levels [int] Maximum number of levels. Default: 10.

cycle type [string] Multigrid cycle type. Possible values: "V,
"W”. Default: ”V”.

problem: symmetric [bool] Symmetry of a problem. Default: true.

4.4 Smoothing and coarse solver options

MUELU relies on other TRILINOS packages to provide level smoothers and coarse solvers.
IFPACK and IFPACK?2 provide standard smoothers (see Table 4.1), and AMESOS and AMESO0S?2
provide direct solvers (see Table 4.2). Note that it is completely possible to use any level smoother
as a direct solver.

MUELU checks parameters smoother: * type and coarse: type to determine:

e what package to use (i.e., is it a smoother or direct solver);

e possibly transform the type (in case of a smoother)

@ [FPACK and IFPACK?2 use different types to construct smoothers (e.g., “point relaxation
stand-alone” vs “RELAXATION”). MUELU follows IFPACK2 notation for smoother types.
Please consult IFPACK2 manual [10].
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The parameter lists smoother: * params and coarse: params are passed directly to the corre-
sponding package without any examination of their content. Please consult corresponding manuals
for a list of possible values.

By default, MUELU uses one sweep of symmetric Gauss-Seidel for both pre- and post-smoothing,
and SuperLU for coarse system solver.

smoother: type

RELAXATION Point relaxation smoothers, including Jacobi, Gauss-Seidel,
symmetric Gauss-Seidel, etc. The exact smoother is cho-
sen by specifying relaxation: type parameter in the
smoother: params sublist.

CHEBYSHEV Chebyshev polynomial smoother.

ILUT, RILUK Local (processor-based) incomplete factorization methods.

Table 4.1. Commonly used smoothers provided by IF-
PACK/IFPACK2. Note that these smoothers can also be used as
coarse grid solvers.

coarse: type AMESOS AMESOS2

KLU X Default AMESOS solver [7].

KLU2 X Default AMESOS?2 solver [4].

SuperLU X X Third-party serial sparse direct solver [9].

SuperLU_dist X X Third-party  parallel sparse  direct
solver [9].

Umfpack X Third-party solver [6].

Mumps X Third-party solver [2].

Table 4.2. Commonly used direct solvers provided by AME-

SOS/AMESO0S2
smoother: pre or post [string] Smoother combination. Possible values: “pre”,
“post”, “both”, “none”. Default: “both”.
smoother: type [string] Smoother type. Possible values: see Table 4.1.

Default: one sweep of symmetric Gauss-Seidel.
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smoother:

smoother:

smoother:

smoother:

smoother:

smoother:

smoother:

smoother:

coarse:

coarse:

coarse:

coarse:

pre type

post type

params

pre params

post params

overlap

pre overlap

post overlap

max size

type

params

overlap

[string] Pre-smoother type. Possible values: see Ta-
ble 4.1. Default: one sweep of symmetric Gauss-
Seidel.

[string] Post-smoother type. Possible values: see Ta-
ble 4.1. Default: one sweep of symmetric Gauss-
Seidel.

[ParameterList] Smoother parameters. For standard
smoothers, MUELU passes them directly to STRA-
TIMIKOS.

[ParameterList] Pre-smoother parameters. For stan-
dard smoothers, MUELU passes them directly to
STRATIMIKOS.

[ParameterList] Post-smoother parameters.  For
standard smoothers, MUELU passes them directly to
STRATIMIKOS.

[int] Smoother subdomain overlap. Default: 0.

[int] Pre-smoother subdomain overlap. Default: 0.

[int] Post-smoother subdomain overlap. Default: 0.

[int] Maximum dimension of the coarse grid. MUELU
will stop coarsening once it is achieved. Default: 2000.

[string] Coarse solver. Possible values: see Table 4.2.
Default: ”SuperLU”.

[ParameterList] Coarse solver parameters. MUELU
passes them directly to coarse solver.

[int] Coarse solver subdomain overlap. Default: 0.
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4.5 Aggregation options

uncoupled Attempts to construct aggregates of optimal size (3¢ nodes
in d dimensions). Each process works independently, and
aggregates cannot span processes.
coupled Attempts to construct aggregates of optimal size (3¢ nodes
in d dimensions). Aggregates are allowed to cross proces-
sor boundaries. Use carefully. If unsure use uncoupled
instead.
Table 4.3. Available coarsening schemes.
aggregation: type [string] Aggregation scheme. Possible values: “uncou-
pled”, ”coupled”. Default: “uncoupled”.
aggregation: ordering [string] Ordering strategy. Possible values: “natrual”,
”graph”, “random”. Default: “natural”.
aggregation: drop scheme [string] Aggregation connectivity dropping scheme.
Possible values: “classical”, ”distance laplacian”. De-
fault: ’classical”.
aggregation: drop tol [double] Aggregation dropping threshold. De-
fault: 0.0.
aggregation: min agg [int] Minimum size of an aggregate. Default: 2.
size
aggregation: max agg [int] Maximum size of an aggregate. De-
size fault: 2147483647.
aggregation: Dirichlet [double] Threshold for determining whether entries are
threshold zero during Dirichlet row detection. Default: 0.0.
aggregation: export [bool] Export data for visualization post-processing.

visualization data

Default: false.
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4.6 Rebalancing options

repartition:

repartition:

repartition:

repartition:

repartition:

per proc

repartition:

imbalance

repartition:

repartition:

and R

enable

partitioner

params

start level

min rows

max

remap parts

rebalance P

[bool] Repartitioning on/off switch. Default: false.

[string] Partitioning package to use. Possible values:
”zoltan”, ”zoltan2”. Default: ~zoltan2”.

[ParameterList] Partitioner parameters. MUELU

passes them directly to partitioner.

[int] Minimum level to run partitioner. MUELU does
not repartition for finer levels. Default: 2.

[int] Desired minimum number of rows per processor.
If actual number if smaller, then repartitioning occurs.
Default: 800.

[double] Desired maximum nonzero imbalance ratio.
Default: 1.2.

[bool] Postprocessing for partitioning to reduce data
migration. Default: true.

[bool] Do rebalancing of R and P during the setup. This
speeds up the solve, but slows down the setup phases.
Default: true.

4.7 Multigrid algorithms

multigrid algorithm

9

Possible values: “un-
emin”, "pg”. Default: ”sa”.

[string] Multigrid method.

9

smoothed”, ”sa”,
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semicoarsen:
rate

coarsen

sa: damping factor

sa: use filtered matrix

filtered matrix: use
lumping

filtered matrix: reuse
eigenvalue
emin: iterative method

emin: num iterations
emin: num reuse
iterations

emin: pattern

emin: pattern order

[int] Rate at which to coarsen unknowns in the z direc-
tion. Default: 3.

[double] Damping factor for smoothed aggregation.
Default: 1.33333333.

[bool] Matrix to use for smoothing the tentative prolon-
gator. The two options are: to use the original matrix,
and to use the filtered matrix with filtering based on fil-
tered graph used for aggregation. Default: true.

[bool] During construction of a filtered matrix, we have
an option to add dropped entries to the diagonal. This is
useful for preserving constant nullspace for the Lapla-
cian type matrix. Default: true.

[bool] During construction of a filtered matrix, we have
an option to get the eigenvalue estimate from the orig-
inal matrix. This allows us to skip heavy computation.
Default: true.

[string] Iterative method to use for energy minimiza-
tion of intial prolongator in energy-minimization. Pos-
sible values: “cg”, ’sd”. Default: "cg”.

[int] Number of iterations to minimize initial prolon-
gator energy in energy-minimization. Default: 2.

[int] Number of iterations to minimize the reused pro-
longator energy in energy-minimization. Default: 1.

[string] Sparsity pattern to use for energy minization.
Possible values: ”AkPtent”. Default: ”AkPtent”.

[int] Matrix order for the “AkPtent” pattern. De-
fault: 1.
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4.8 Miscellaneous options

export data

print initial parameters

print unused parameters

transpose:

use implicit

[ParameterList] Exporting a subset of the hierarchy
data in a file. Currently, the list can contain any of three
parameter names ("A”, ”P”, ”R”) of type “string” and
value ”{levels separated by commas}”. A matrix is
saved in two files: a) data is saved in the MatrixMar-
ket format in a file called ”A_level.mm”, or similar; b)
row map is saved in the MatrixMarket format in a file
called "rowmap_A_level.mm”, or similar.

[bool] Print parameters provided for a hierarchy con-
struction. Default: true.

[bool] Print parameters unused during a hierarchy con-
struction. Default: true.

[bool] Use implicit transpose for the restriction opera-
tor. Default: false.
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